Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535188

RESUMO

Root rot as a result of Salvia miltiorrhiza is a common root disease caused by Fusarium spp., which has become one of the main diseases affecting the production of S. miltiorrhiza. Currently, several hypovirulence-related mycoviruses have been identified in many phytopathogenic fungi, including Fusarium spp., which show potential as biological controls. In this study, we report a new mycovirus, Fusarium oxysporum partitivirus 1 (FoPV1), isolated from F. oxysporum strain FCR51, which is a causal agent of S. miltiorrhiza dry rot. The FoPV1 genome contains two double-stranded RNA segments (dsRNA1 and dsRNA2). The size of dsRNA1 is 1773 bp, and it encodes a putative RNA-dependent RNA polymerase (RdRp). The dsRNA2 is 1570 bp in length, encoding a putative capsid protein (CP). Multiple sequence alignments and phylogenetic analyses based on the amino acid sequences of the RdRp and the CP proteins indicated that FoPV1 appears to be a new member of the family Partitiviridae that is related to members of the genus Gammapartitivirus. Pathogenicity assay showed that FoPV1 confers hypervirulence to its host, F. oxysporum. This is the first report of a partitivirus infecting F. oxysporum and the first hypovirulence-related mycovirus from the causal agent of S. miltiorrhiza dry rot.

2.
J Fish Dis ; 47(4): e13922, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38204197

RESUMO

The purpose of this study was to investigate whether a defensin-like antimicrobial peptide (C-13326 peptide) identified in Hermetia illucens could possess protective effect against multidrug-resistant Aeromonas schubertii in hybrid snakehead (Channa maculate ♀ × Channa argus ♂). The cDNA of C-13326 peptide comprised 243 nucleotides encoding 80 amino acids, with six conserved cysteine residues and the classical CSαß structure. The recombinant expression plasmid pPIC9K-C-13326 was constructed and transformed into GS115 Pichia pastoris, and the C-13326 peptide was expressed by induction with 1% methanol. The crude extract of C-13326 peptide was precipitated by ammonium sulfate, assayed by Braford method, detected by tricine-SDS-PAGE, evaluated by BandScan software and identified by liquid chromatography-mass spectrometry. The C-13326 peptide was shown to have inhibitory activity against the growth of multidrug-resistant A. schubertii DM210910 by using the minimum growth inhibitory concentration and Oxford cup method. In addition, scanning electron microscopy analysis suggested that C-13326 peptide inhibited the growth of A. schubertii DM210910 by damaging the bacterial cell membrane. To explore the role of peptide C-13326 in vivo, hybrid snakehead was fed with peptide C-13326 as feed additives for 7 days. The results revealed that C-13326 peptide could significantly down-regulate the expression levels of IL-1ß, IL-8, IL-12 and TNF-α (p < .05), and significantly improved the survival rate of hybrid snakehead after challenging with A. schubertii DM210910. Therefore, the C-13326 peptide is a promising antimicrobial agent for A. schubertii treatment in aquaculture.


Assuntos
Aeromonas , Doenças dos Peixes , Animais , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Peixes/genética , Aeromonas/genética , Peptídeos , Defensinas/genética , Defensinas/farmacologia
3.
Microorganisms ; 11(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138134

RESUMO

Plant diseases caused by pathogenic fungi pose a significant threat to agricultural production. This study reports on a strain YBS22 with broad-spectrum antifungal activity that was isolated and identified, and its active metabolites were purified and systematically studied. Based on a whole genome sequence analysis, the new strain YBS22 was identified as Streptomyces melanogenes. Furthermore, eight gene clusters were predicted in YBS22 that are responsible for the synthesis of bioactive secondary metabolites. These clusters have homologous sequences in the MIBiG database with a similarity of 100%. The antifungal effects of YBS22 and its crude extract were evaluated in vivo and vitro. Our findings revealed that treatment with the strain YBS22 and its crude extract significantly reduced the size of necrotic lesions caused by Magnaporthe oryzae on rice leaves. Further analysis led to the isolation and purification of an active compound from the crude extract of the strain YBS22, identified as N-formylantimycin acid methyl ester, an analog of antimycin, characterized by NMR and MS analyses. Consistently, the active compound can significantly inhibit the germination and development of M. oryzae spores in a manner that is both dose- and time-dependent. As a result, we propose that the strain YBS22 could serve as a novel source for the development of biological agents aimed at controlling rice blast disease.

4.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108422

RESUMO

Fusarium oxysporum causes vascular wilt in more than 100 plant species, resulting in massive economic losses. A deep understanding of the mechanisms of pathogenicity and symptom induction by this fungus is necessary to control crop wilt. The YjeF protein has been proven to function in cellular metabolism damage-repair in Escherichia coli and to play an important role in Edc3 (enhancer of the mRNA decapping 3) function in Candida albicans, but no studies have been reported on related functions in plant pathogenic fungi. In this work, we report how the FomYjeF gene in F. oxysporum f. sp. momordicae contributes to conidia production and virulence. The deletion of the FomYjeF gene displayed a highly improved capacity for macroconidia production, and it was shown to be involved in carbendazim's associated stress pathway. Meanwhile, this gene caused a significant increase in virulence in bitter gourd plants with a higher disease severity index and enhanced the accumulation of glutathione peroxidase and the ability to degrade hydrogen peroxide in F. oxysporum. These findings reveal that FomYjeF affects virulence by influencing the amount of spore formation and the ROS (reactive oxygen species) pathway of F. oxysporum f. sp. momordicae. Taken together, our study shows that the FomYjeF gene affects sporulation, mycelial growth, pathogenicity, and ROS accumulation in F. oxysporum. The results of this study provide a novel insight into the function of FomYjeF participation in the pathogenicity of F. oxysporum f. sp. momordicae.


Assuntos
Fusarium , Virulência/genética , Espécies Reativas de Oxigênio/metabolismo , Doenças das Plantas/microbiologia
5.
Arch Virol ; 168(1): 15, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593368

RESUMO

Phaeobotryon rhois is an important pathogenic fungus that causes dieback and canker disease of woody hosts. A novel mycovirus, tentatively named "Phaeobotryon rhois victorivirus 1" (PrVV1), was identified in P. rhois strain SX8-4. The PrVV1 has a double-stranded RNA (dsRNA) genome that is 5,224 base pairs long and contains two open reading frames (ORF1 and ORF2), which overlap at a AUGA sequence. ORF1 encodes a polypeptide of 786 amino acids (aa) that contains the conserved coat protein (CP) domain of victoriviruses, while ORF2, encodes a large polypeptide of 826 aa that contains the conserved RNA-dependent RNA polymerase (RdRp) domain of victoriviruses. Our analysis of genomic structure, homology, and phylogeny indicated that PrVV1 is a novel member of the genus Victorivirus in the family Totiviridae. This is the first report of the complete genome sequence of a victorivirus that infects P. rhois.


Assuntos
Ascomicetos , Micovírus , Vírus de RNA , Totiviridae , Proteínas Virais/genética , Proteínas Virais/química , Ascomicetos/genética , Genômica , Genoma Viral , Filogenia , Fases de Leitura Aberta , RNA de Cadeia Dupla , RNA Viral/genética , RNA Viral/química , Micovírus/genética , Vírus de RNA/genética
6.
J Microbiol Methods ; 205: 106650, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481430

RESUMO

Nocardia seriolae is a gram-positive bacterium that causes nocardiosis, threatening fish farming. Advanced nocardiosis is challenging to control; thus, accurate detection methods of the causal agent in the early disease stage are required. In this study, we developed a TaqMan fluorescence quantitative PCR (qPCR) assay for quantitative detection of N. seriolae in fish tissues and water samples. A pair of highly specific primers and a TaqMan probe were designed based on the N. seriolae 16S23S rRNA internal transcribed spacer (ITS) region. A high correlation coefficient (R2 = 0.998) of the standard curve with a 99.5% efficiency was obtained. The qPCR detection limit of the method was as low as 19.8 copies/µL, 1000 times more sensitive than conventional PCR, and has a good performance in the detection of cultured bacteria (y = -3.750× + 48.075, R2 = 0.974). Even 1.42 CFU/mL N. seriolae collected from 500 mL of natural pond water can be detected. Furthermore, a linear model for the relationship between the log of bacteria load and Cq values in water was established (y = -3.239× + 40.978), and the R2 value was 0.979. This assay was used for accurate N. seriolae detection in fish tissues, water samples, feeds and soils. This study provides a valuable tool for the early detection and control of nocardiosis in aquaculture.


Assuntos
Doenças dos Peixes , Nocardiose , Nocardia , Animais , Nocardia/genética , Nocardiose/diagnóstico , Nocardiose/veterinária , Nocardiose/microbiologia , Peixes/microbiologia , Reação em Cadeia da Polimerase , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/microbiologia
7.
Fish Shellfish Immunol Rep ; 3: 100057, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36419598

RESUMO

Chemerin receptor 1 (Chemerin1) plays a critical role in innate and adaptive immune systems. In this study, a cobia (Rachycentron canadum) Chemerin1 was identified, and its molecular characterization and expression patterns were analyzed. Multiple sequence alignment revealed that the RcChemerin1 possessed a typical dynein regulatory complex (DRC) motif. There was also a potential N-glycosylation site in the extracellular regions of the N-terminus and intracellular loops (ICL) 1 region. Phylogenetic analysis demonstrated that the RcChemerin1 was clustered together with homologous proteins from other fish species. RcChemerin1 was constitutively expressed in a wide range of tissues (especially in immune-related tissues) with different expression levels, which suggests that the RcChemerin1 plays different roles in un-stimulated tissues. RcChemerin1 expression showed up-regulation in the head kidney after Vibrio harveyi challenge. Up-regulation in the head kidney and spleen was also observed after polyinosinic-polycytidylic acid (poly I: C) challenge, which suggests that RcChemerin1 may play vital roles during bacterial and viral infection. The differential responses of immune organs to bacteria and poly I: C imply the differences in defense mechanisms against viruses and bacteria.

8.
Front Microbiol ; 13: 897589, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35747367

RESUMO

Rice stripe virus (RSV) has a serious effect on rice production. Our previous research had shown that RSV P2 plays important roles in RSV infection, so in order to further understand the effect of P2 on rice, we used Tandem Mass Tag (TMT) quantitative proteomics experimental system to analyze the changes of protein in transgenic rice expressing P2 for the first time. The results of proteomics showed that a total of 4,767 proteins were identified, including 198 up-regulated proteins and 120 down-regulated proteins. Functional classification results showed that differentially expressed proteins (DEPs) were mainly localized in chloroplasts and mainly involved in the metabolic pathways. Functional enrichment results showed that DEPs are mainly involved in RNA processing and splicing. We also verified the expression of several DEPs at the mRNA level and the interaction of a transcription factor (B7EPB8) with RSV P2. This research is the first time to use proteomics technology to explore the mechanism of RSV infection in rice with the RSV P2 as breakthrough point. Our findings provide valuable information for the study of RSV P2 and RSV infection mechanism.

9.
Fish Shellfish Immunol ; 123: 136-141, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35218972

RESUMO

An experiment was performed to study the effects of dietary levels of black soldier fly larva meal (BSFLM) on the growth performance, immunity and disease resistance of juvenile grouper (Epinephelus coioides). Four isoproteic and isoenergetic diets were formulated with dietary BSFLM levels of 0 g/kg (T0), 25 g/kg (T2.5), 50 g/kg (T5) and 100 g/kg (T10). Each diet was randomly fed to triplicate groups, each containing 40 fish. The results of the 30-day study indicated that fish growth performance was not affected in the T2.5 and T5 groups compared with the T0 group. In the group with a dietary BSFLM level of 100 g/kg, the feed coefficient was significantly higher than that in the other three groups. The superoxide dismutase, catalase, glutathione peroxidase, lysozyme activity, and malondialdehyde content in the liver, and the interleukin-1 beta (IL-1ß), gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α) and heat shock protein 70 (HSP70) expression in the gills, head kidney, liver and spleen remained consistent in all groups. In addition, no significant differences in the cumulative mortality or parasite abundance in groupers after Vibrio harveyi and Cryptocaryon irritans infection were observed. These results suggested that BSFLM supplemented diets did not inhibit disease resistance in groupers.


Assuntos
Bass , Dípteros , Doenças dos Peixes , Ração Animal/análise , Animais , Dieta/veterinária , Resistência à Doença , Larva
10.
Viruses ; 13(10)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34696456

RESUMO

A novel mycovirus named Fusarium oxysporum alternavirus 1(FoAV1) was identified as infecting Fusarium oxysporum strain BH19, which was isolated from a fusarium wilt diseased stem of Lilium brownii. The genome of FoAV1 contains four double-stranded RNA (dsRNA) segments (dsRNA1, dsRNA 2, dsRNA 3 and dsRNA 4, with lengths of 3.3, 2.6, 2.3 and 1.8 kbp, respectively). Additionally, dsRNA1 encodes RNA-dependent RNA polymerase (RdRp), and dsRNA2- dsRNA3- and dsRNA4-encoded hypothetical proteins (ORF2, ORF3 and ORF4), respectively. A homology BLAST search, along with multiple alignments based on RdRp, ORF2 and ORF3 sequences, identified FoAV1 as a novel member of the proposed family "Alternaviridae". Evolutionary relation analyses indicated that FoAV1 may be related to alternaviruses, thus dividing the family "Alternaviridae" members into four clades. In addition, we determined that dsRNA4 was dispensable for replication and may be a satellite-like RNA of FoAV1-and could perhaps play a role in the evolution of alternaviruses. Our results provided evidence for potential genera establishment within the proposed family "Alternaviridae". Additionally, FoAV1 exhibited biological control of Fusarium wilt. Our results also laid the foundations for the further study of mycoviruses within the family "Alternaviridae", and provide a potential agent for the biocontrol of diseases caused by F. oxysporum.


Assuntos
Micovírus/genética , Micovírus/isolamento & purificação , Fusarium/virologia , Vírus não Classificados/genética , Vírus não Classificados/isolamento & purificação , Micovírus/classificação , Genoma Viral , Fases de Leitura Aberta , Filogenia , Doenças das Plantas , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , RNA de Cadeia Dupla , RNA Viral/genética , RNA Polimerase Dependente de RNA , Vírus não Classificados/classificação
11.
Arch Virol ; 166(4): 1237-1240, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33560459

RESUMO

Aplosporella javeedii is a pathogenic fungus that causes canker and dieback of jujube in China. In this study, we report a new mycovirus, Aplosporella javeedii partitivirus 1 (AjPV1), isolated from A. javeedii strain NX55-3. The AjPV1 genome contains two double-stranded RNA elements (dsRNA1 and dsRNA2). The size of dsRNA1 is 2,360 bp, and it encodes a putative RNA-dependent RNA polymerase (RdRp), while dsRNA2 is 2,301 bp in length and encodes a putative capsid protein (CP). The sequences of RdRp and CP have significant similarity to those of members of the family Partitiviridae. Sequence alignment and phylogenetic analysis showed that AjPV1 is a new member of the family Partitiviridae that is related to members of the genus Betapartitivirus. To our knowledge, AjPV1 is the first mycovirus reported from A. javeedii.


Assuntos
Ascomicetos/virologia , Vírus de RNA de Cadeia Dupla/genética , Micovírus/genética , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Sequência de Bases , Vírus de RNA de Cadeia Dupla/classificação , Vírus de RNA de Cadeia Dupla/isolamento & purificação , Micovírus/classificação , Micovírus/isolamento & purificação , Genoma Viral/genética , Filogenia , Doenças das Plantas/virologia , RNA Viral/genética , Proteínas Virais/genética , Ziziphus/microbiologia , Ziziphus/virologia
12.
Front Microbiol ; 11: 569869, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362731

RESUMO

Fusarium wilt caused by Fusarium oxysporum f. sp. momordicae (FoM) is an important fungal disease that affects the production of bitter gourd. Hypovirulence-associated mycoviruses have great potential and application prospects for controlling the fungal disease. In this study, a novel ourmia-like virus, named Fusarium oxysporum ourmia-like virus 1 (FoOuLV1), was isolated from FoM strain HuN8. The viral genomic RNA is 2,712 nucleotides (nt) in length and contains an open reading frame (ORF) encoding a putative RNA-dependent RNA polymerase (RdRp) using either standard or mitochondrial codes. In strain HuN8, there was also a FoOuLV1-associated RNA segment with 1,173 nt in length with no sequence homology. Phylogenetic analysis showed that FoOuLV1 is a member of the genus Magoulivirus of the family Botourmiaviridae. FoOuLV1 was found to be associated with hypovirulence in FoM. Moreover, FoOuLV1 and its hypovirulence trait can be transmitted horizontally to other FoM strains and also to other formae speciale strains of F. oxysporum. In addition, FoOuLV1 showed significant biological control effect against the bitter gourd Fusarium wilt. To our knowledge, this study reveals the first description of a hypovirulence-associated ourmia-like mycovirus, which has the potential to the biological control of Fusarium wilt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...